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ABSTRACT
In this paper, we introduce the concept of “dynamic groups” for

Group Trip Planning (GTP) queries and propose a novel query type

Dynamic Group Trip Planning (DGTP) queries. �e traditional GTP

query assumes that the groupmembers remain static or �xed during

the trip, whereas in the proposed DGTP queries, the group changes

dynamically over the duration of a trip where members can leave

or join the group at any point of interest (POI) such as a shopping

center, a restaurant or a movie theater. �e changes of members

in a group can be either predetermined (i.e., group changes are

known before the trip is planned) or in real-time (changes happen

during the trip). In this paper, we provide e�cient solutions for

processing DGTP queries in the Euclidean space. A comprehensive

experimental study using real and synthetic datasets shows that our

e�cient approach can compute DGTP query solutions within few

seconds and signi�cantly outperforms a naive approach in terms

of query processing time and I/O access.
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1 INTRODUCTION
A Group Trip Planning (GTP) query [2, 3] assumes that the group

remains static during the trip, i.e., starting from the dispersed source

locations, the group members travel together via a sequenced set of

points of interests (POIs) such as a shopping center, a restaurant and

a movie theater, and �nally head towards their di�erent destination

locations. �e strict constraint of visiting the whole trip as a static

group poses serious limitations to its applicability in many practical

scenarios. For example, some members may want to join the group

in the middle of a trip instead of the �rst POI. Some other members

may want to leave the trip earlier than from the last POI type. �e

join and/or leave events of group members can be preplanned (i.e.,

known before the start of the group trip) or may happen in real

time. To address this, we introduce a Dynamic Group Trip Planning
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(DGTP) query that can handle the dynamic group behavior and

computes a group trip with the minimum travel distance.

Straightforward application of existing GTP algorithms [2, 3]

for every change of group members in a DGTP query would incur

extremely high processing overhead due to the retrieval of same

POIs multiple times and repeated computations. In this paper, we

develop an e�cient approach for processing DGTP queries for both

Euclidean space. Our approach can handle both predetermined and

real time changes of members in the group; users can join, leave or

rejoin anytime during a group trip.

We develop novel techniques to re�ne the POI search region.

Using elliptical properties, we prove that any POI outside the search

region cannot minimize the total trip distance of group members.

In addition, we extend the dynamic programming approach [2]

for GTP queries to e�ciently compute the aggregate trip distance

by considering the dynamic group behavior and re-evaluations of

answers for a DGTP query. Extensive experiments using real and

synthetic datasets show that our approach signi�cantly outper-

forms a naive approach in terms of I/O access and processing time.

In summary, our contributions are as follows.

(i) We introduce the concept of dynamic groups, and DGTP

queries for Euclidean space.

(ii) We propose an e�cient approach to process DGTP queries.

Speci�cally, we develop techniques to re�ne the POI search space,

and thereby reduce the number of POI retrieval from the database.

In addition, we develop a dynamic programming algorithm to e�-

ciently compute optimal group trips based on the retrieved POIs

from the database.

(iii) We conduct extensive experiments using real data sets

in the Euclidean space to show the e�ectiveness of our e�cient

approach over a naive approach.

2 RELATEDWORK
E�cient computation of trips for a single user [5, 6] as well as

for groups [2, 3] have been studied in both Euclidean space and

road networks. Group trip planning (GTP) has been introduced

in [3] for the Euclidean space. �e proposed algorithm in [3] is not

extensible for processing GTP queries in road networks. In [1, 2],

the authors proposed e�cient GTP algorithms for road networks.

Recently, in [4], the authors proposed a new variant of a GTP

query, subgroup trip planning queries, that return the optimal trips

for di�erent subgroup size. �ese approaches for processing GTP

queries and variants assume that all group members visit every POI

type. On the other hand, we overcome this limitation; in a DGTP

query, a group member can visit any number of POI types.

In [2], the authors re�ne the POI search region as elliptical re-

gions, where the elliptical property ensures that the distance be-

tween two foci of the ellipse via a POI outside the ellipse is greater

than or equal to the length of the major axis. �e authors devel-

oped techniques to determine the foci of the ellipses, and set the

length of the major axis such that a POI outside the ellipse cannot
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become part of an optimal trip. However, these techniques are not

applicable in our scenario as in our approach, members can join

and/or leave a group at any POI type.

3 PROBLEM FORMULATION
A DGTP query enables a dynamic group to plan a group trip with

the minimum aggregate travel distance.�e POI types and the order

of visiting POI types (e.g., restaurant before a shopping center)

are speci�ed before a group trip is planned. In a DGTP query, it

is essential that in addition to the POI types, the order of visiting

POI types is �xed before the start of the group trip because group

members decide their trips based on the order of visiting POI types.

A groupmember may decide to join a group trip if a shopping center

and a movie theater are visited in a sequence. A group member’s

trip with respect to a group trip can be formally de�ned as a follows:

De�nition 3.1. (A Trip Ti = {si , PTi ,di }). Given a set ofm or-

dered POI types PT = {t1, t2, . . . , tm } for a group trip, a trip Ti of
user ui starts from source location si , goes through a set of POI

types PTi that is a contiguous subset of PT , and ends at destination
di .

A usermay participate in a group tripmultiple times. Consider an

example, where PT = {t1, t2, t3, t4, t5, t6}. A userui �rst participates
in POI types t1 and t2 with respect to her source and destination

locations s1i and d1i , and then again participates in POI types t4 and

t5 with respect to her source and destination locations s2i and d
2

i .

�us, in such a scenario, a DGTP query considers multiple trips of

a group member while planning a group trip. We denote multiple

trips of user ui as T
1

i ,T
2

i , . . . ,T
ki
i , where ui participates in ki trips

and T
j
i = {s

j
i , PT

j
i ,d

j
i }.

Depending upon the source and destination locations, and POI

types of the trips of groupmembers, before the start of a group trip, a

DGTP query identi�es the locations of POIs, one from every type in

PT = {t1, t2, . . . , tm }, that minimize the group trip distance. Before

the start of a group trip, the group trip distance is the summation

of the individual trip distances, where a trip distance is measured

as the travel distance between the source and destination locations

via the POIs of types speci�ed in a trip. We use function dist(p,q)
to compute the Euclidean distance between two spatial points p
and q.
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Figure 1: A DGTP query scenario

When an existing trip changes or a new trip is added in real-

time at any POI, the initially optimal set of POIs retrieved by a

DGTP query may no longer minimize the group trip distance for

the remaining part of the group trip. To address this scenario, a

DGTP query recomputes and identi�es the POI locations for the

not visited POI types in PT = {t1, t2, . . . , tm } that minimize the

group trip distance for the remaining part of the group trip.

�us, the evaluation of a DGTP query is performed in two phases.

Initially, based on initial trips of group members, a DGTP query

returns an optimal set of POI locations, one for each type in PT =
{t1, t2, . . . , tm }. A�er any change in an existing trip or joining of a

newmember with new trips, a DGTP query recomputes the location

of optimal POIs for not visited POI types in PT . Formally, a DGTP

query is de�ned as follows:

De�nition 3.2. (A DGTP �ery). Given a set of locations of

POIs L in a two dimensional space, a set of ordered POI types

PT = {t1, t2, . . . , tm }, and a set of trips T = {
⋃
i ∈n

⋃
1≤j≤ki T

j
i } of

n group members where ki is the number of trips speci�ed by user

ui , a DGTP query initially returns P0 = {pt1 ,pt2 , . . . ,ptm }, where
P0 ⊆ L and pi represents a POI of type ti ∈ PT , such that the group

trip distance is minimized. Let a change inT occurs when the group

visits POI ptj . A DGTP query returns Pj = {ptj ,ptj+1 , . . . ,ptm },
where Pj ⊆ L and pi represents a POI of type ti ∈ PT , such that the

group trip for the remaining part of the group trip is minimized.

Example. Figure 1(a) shows a DGTP query scenario, source,

and destination locations of three users, and sample POI loca-

tions of three POI types PT = {1, 2, 3}. In the �gure, rectan-

gles represent type 1 POI, triangles represent type 2 POI, stars

represent type 3 POI, and p
j
i denotes the j-th POI of type i . For

this example, initially user 1 speci�es two informed trips T 1

1
=

{s1
1
, {1},d1

1
} and T 2

1
= {s2

1
, {3},d2

1
}, user 2 speci�es one informed

trip T 1

2
= {s1

2
, {1, 2, 3},d1

2
}, and user 3 speci�es one informed trip

T 1

3
= {s1

3
, {2, 3},d1

3
}. �us the trip set T contains four trips where

T = {T 1

1
,T 2

1
,T 1

2
,T 1

3
}. Let a possible answer set for this example

be P0 = {p
2

1
,p3

2
,p4

3
}. Figure 1(b) shows that when group trip is at

second POI p3
2
, user 3 changes its trip from T 1

3
= {s1

3
, {2, 3},d1

3
}

to T 1

3
= {s1

3
, {2},d1

3
}, i.e., user 3 leaves immediately a�er visiting

type 2 POI (the dashed line from p3
2
to d1

3
). As trip set T changes,

the optimal answer requires a re-computation for the remaining

POI types to be visited (type 3). �e �gure shows that a possible

recomputed answer could be P2 = {p
2

3
}. �e solid line from p3

2
to

p4
3
is the initial optimal path while dashed line from p3

2
to p2

3
and

other dashed lines comprise the recomputed optimal path for the

group.

4 A NAIVE APPROACH: NAIVEDGTP
We �rst develop a naive approach NaiveDGTP for DGTP queries.

Our naive approach works in two phases: �e initial phase retrieves

all POIs from the database and computes an optimal answer for

the initial trips, and the second phase is an update operation that

updates existing optimal answer with respect to trip changes or

addition of new trips in real time. �e algorithm is brie�y explained

below where Step 1 comprises the initial phase and Step 2 describes

the update phase.

Step 1 - We retrieve all POIs of required types from the data-

base. �en we apply a dynamic programming (dp) algorithm that
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Table 1: Columns of dp table with respect to DGTP scenario shown
in Fig. 1(a). Each cell in a column stores a POI pik and aggregate sum
v ik .

Column 1

< p1
1
, v1

1
>

< p2
1
, v2

1
>

< p3
1
, v3

1
>

< p4
1
, v4

1
>

Column 2

< p1
2
, v1

2
>

< p2
2
, v2

2
>

< p3
2
, v3

2
>

Column 3

< p1
3
, v1

3
>

< p2
3
, v2

3
>

< p3
3
, v3

3
>

< p3
4
, v4

3
>

computes an optimal answer from the retrieved set of POIs based

on set of trips T and set of ordered POI types PT . �e algorithm

uses a table like data structure (shown in Table 1) consisting ofm
columns of cells. Each cell cik in column k stores two things: a POI

pik of type tk and partial aggregate distance vik up to that POI. we

compute the partial aggregate sum vik for each cell cik as follows.

(a) For k = 1 (column 1), we compute the sum of distances from

(i) sources to pi
1
for trips that join at type t1 and (ii) destination

to pi
1
for trips that leave from type t1. In this way, for all i vi

1
is

computed and stored in ci
1
.

(b) For 2 ≤ k ≤ m, from each cell c
j
k−1 of the previous column

k − 1, we compute a sum of (i) the partial sum stored at c
j
k−1, (ii) the

distance from p
j
k−1 to p

i
k multiplied by the number of users who

continue the trip from tk−1 to tk , (iii) the distances from sources to

pik for trips that join at type tk , and (iv) the distances from destina-

tions to pik for trips that leave from type tk . �en the minimum of

all such sums (found for all js) is calculated and stored at cik . In this

way, vik is computed for all i and stored in cik . A�er this answer set

is computed, the group starts visiting the optimal POIs.

Step 2 - �is step is performed whenever some new trips are

added or trip changes occur in real-time. Based on the changes,

POI type set PT is updated by removing POI types t1, t2, . . . , tk
that have already been visited. �us, the modi�ed POI type set

becomes PT ′ = {tk+1, tk+2, . . . , tm }. �e updated trip set T ′ is
found as follows: (i) all new trips are added and trip changes are

incorporated, (ii) all trips T
j
i s in T which are completely unvisited

are kept as is, (iii) all trips T
j
i s which have been completely visited

are removed from T , (iv) For trips T
j
i s which are partially visited,

the unvisited parts of the trip are kept, the visited part is removed

from T
j
i . For these partial trips, the source s

j
i is also updated to be

the current POI location pk . A�er T and PT are updated, a new

DGTP query is run over the modi�ed T ′ and PT ′ to retrieve the

updated optimal POI set.

NaiveDGTP runs the dp algorithm multiple times (once for ini-

tial phase and once for every update) on the entire data space.

Hence it will result in extensive I/O overhead and processing time.

In Section 5, we describe an e�cient solution to process DGTP

queries.

5 AN EFFICIENT APPROACH: FASTDGTP
In this section, we present an e�cient approach FastDGTP for

processing DGTP queries. FastDGTP has the following two key

improvements over the NaiveDGTP approach: (i) It exploits the

trip information of users to compute a pruning bound that allows it

to search a small data space instead of the entire database, and (ii)

It stores POIs in a cache and re-uses those POIs to avoid retrieving

the same POIs again in di�erent runs of the update phase.

�e initial phase of the algorithm, the computation of the initial

optimal answer set, has the following key steps:

Step 1 - �e algorithm �rst computes a heuristic answer for the

DGTP query.

Step 2 - Using the heuristic answer and trip setT , the algorithm
computes three pruning bounds for re�ning the search region. �e

pruning bounds ensure that the algorithm searches only a limited

set of POIs rather than the entire data space in the dp algorithm to

compute the optimal answer. It signi�cantly reduces the computa-

tional overhead incurred by the ine�cient naive approach.

Step 3 - �e algorithm performs a range query to retrieve all

candidate POIs residing inside the re�ned search space.

Step 4 - �e algorithm applies the dp algorithm (described in

Step 1 of Section 4) to compute the optimal answer set from the

candidate set of POIs retrieved by Step 3 above. In addition, the

algorithm also saves the retrieved POIs and the computed pruning

bounds to use in the next update phase.

�e update phase, which is executed to update optimal answer

when T changes, consists of the following steps:

Step 1 - �e algorithm updates trip set T and POI set PT using

the technique described in Step 2 of Section 4. �is creates the

modi�ed T ′ and PT ′.
Step 2 - �e algorithm computes new pruning bounds for the

search region based on existing optimal answer and updated trip

information T ′ and PT ′. Note that instead of using a heuristic

answer, we use the exiting optimal answer to compute bounds in

the update phase.

Step 3 - �e algorithm executes a range query to retrieve candi-

date POIs residing inside the new bound. Unlike the range query

executed in the initial phase, the range query in update phase re-

trieves only those POIs that are within the newly computed bound

and at the same time lies outside the previous bound. As there will

be signi�cant overlap between bound regions of successive update

phases, we do not retrieve those POIs that have already been re-

trieved by the previous update phase. Instead we reuse those POIs

from the cache. �is strategy will result in only a very small set of

POIs to be retrieved during each update phase. �is caching saves

the computational overhead to access the R-tree than if we would

have retrieved all POIs within the new bound.

Step 4 - �e algorithm uses the same dp technique used earlier

to compute the updated optimal answer set. �e optimal answer

returned by update phase contains one POI from each unvisited

POI type in PT ′. �e algorithm also saves the computed bound and

retrieved candidate POIs in a cache to use in the future update step.

�e following sections describe the key components of

FastDGTP approach in detail.

5.1 Computation of Heuristic Answer
In the initial phase of the FastDGTP approach, a heuristic answer

is required to compute the initial bounds for the search region.

Although any heuristic technique is applicable, we use the following

greedy approach that selectsm POIs from the database, one POI

for each type in PT .
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We �nd the POI p1 of type t1 from the database such that∑
i, j, J (i, j,1)=1 dist(s

j
i ,p1) +

∑
i, j,L(i, j,1)=1 dist(d

j
i ,p1) is minimum

among all POIs of the �rst type. �en we �nd sequentiallym − 1
POIs p2, p3, ..., pm of the remainingm − 1 types such that for each

such POI pk of type tk , the sum of the following three terms is mini-

mum among all POIs of the corresponding type: (i)dist(pk−1,pk )∗n
′

where n′ is the number of trips that visit pk from pk−1, (ii)∑
i, j, J (i, j,k )=1 dist(s

j
i ,pk ), and (iii)

∑
i, j,L(i, j,k )=1 dist(d

j
i ,pk ). So

our heuristic does actually work by �nding a POI of each type

such that it is the Group Nearest Neighbor (GNN) of previously

selected POI multiplied by number of trips that visit a POI type tk
from a POI type tk−1, set of sources locations of trips that join at

the POI, and set of destination locations of trips that leave from

the POI. A�er �nding this heuristic set of POIs, we compute the

individual trip distances of each user in the answer set, and then

�nd the aggregate travel distance of all users. �ese distances are

used for the bound computation explained in the next Section.

5.2 Computation of Search Region Bounds
In this section, we present how the trip setT and a candidate answer

P can be exploited together to compute bounds for the search region.

In the initial phase, P is computed by the heuristic method whereas

in the update phase, existing optimal answer is used as P . Let us
de�ne the following terms:

• TD
j
i : �e travel distance of trip T

j
i (jth trip of user ui ) in

candidate answer P .
• TD: �e aggregate travel distance of all trips of all users in

P , so TD =
∑
i
∑
j TD

j
i .

• TDmin
j
i : �e lower bound of TD

j
i .

• TDmax
j
i : �e upper bound for TD

j
i .

• dist(s, t): �e Euclidean distance between spatial points s
and t .

• V (i, j,k): An indicator function where V (i, j,k) = 1 if trip

T
j
i visits POI type tk in group trip (i.e., tk ∈ PT

j
i ), and 0

otherwise.

5.2.1 Computation of TDmin
j
i . By de�nition, TDmin

j
i is the

lower bound of TD
j
i , i.e., the minimum distance that ui has to

travel for its jth trip in any candidate answer including the optimal

one also. For each trip T
j
i , we compute TDmin

j
i as follows: First

we retrieve the nearest POI pk of each type tk in PT
j
i such that

dist(s
j
i ,pk ) + dist(d

j
i ,pk ) is minimized. �en TDmin

j
i is found as,

TDmin
j
i =max

1≤k≤ |PT j
i |
(dist(s

j
i ,pk ) + dist(d

j
i ,pk )).

5.2.2 Computation of TDmax
j
i . For each trip T

j
i , we compute

TDmax
j
i using the aggregate travel distance TD of the current

candidate answer P andTDmin
j
i s of all trips as follows:TDmax

j
i =

TD −
∑
k,l,(k,l ),(i, j)TDminlk . �is is the upper bound of TD

j
i in

optimal trip, i.e., T
j
i cannot be greater than TDmax

j
i ; otherwise

optimal trip aggregate distance would be greater than TD which is

not possible.

5.2.3 Computation of elliptical regions. To compute the bounds

for search region, we compute three di�erent sets of ellipses/regions

as follows: (i) For each tripT
j
i ∈ T , we form an ellipse E

j
i where each

E
j
i has two foci at s

j
i and d

j
i , and has major axis equal to TDmax

j
i .
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Figure 2: Computation of search region bounds.

In this way, we get |T | ellipses. (ii) For all POI types in PT , we

formm regions E ′
1
, E ′

2
, ..., E ′m , where each E ′k = ∩i, j,V (i, j,k )=1E

j
i

represents a region for type tk . (iii) For all POI types in PT , we form
m ellipses E ′′

1
, E ′′

2
, ..., E ′′m as follows. Let nk be the number of trips

that visit POI type tk , and s
k
c and dkc be the centroids of all source

and destination locations of thosenk trips.�us,nk =
∑
i, j V (i, j,k),

skc =
1

nk
∑
i, j,V (i, j,k )=1 s

j
i , and dkc =

1

nk
∑
i, j,V (i, j,k)=1 d

j
i . �en

ellipse E ′′k is an ellipse having foci at skc and dkc , and major axis

equal to
1

nk
(TD −

∑
i, j,V (i, j,k )=0TDmin

j
i ).

Example. Fig. 2(a) shows the four ellipses E1
1
, E2

1
, E1

2
, E1

3
with

respect to the four tripsT 1

1
,T 2

1
,T 1

2
, andT 1

3
. Search region bound R1

is the union of all these ellipses. Fig. 2(b) shows the elliptical region

E ′
3
for type 3 where by de�nition E ′

3
= E2

1
∩ E1

2
∩ E1

3
since trips T 2

1
,

T 1

2
, and T 1

3
visit type 3 POI. Fig. 2(d) shows all three regions E ′

1
, E ′

2
,

E ′
3
with respect to three POI types. Fig. 2(c) shows the ellipse E ′′

3

for type 3. For this ellipse, n3 = 3 since three trips (T 2

1
, T 1

2
, and T 1

3
)

visit type 3, centroids s3c =
1

3
(s2
1
+ s1

2
+ s1

3
) and d3c =

1

3
(d2
1
+d1

2
+d1

3
)

and major axis length is
1

3
(TD −TD1

1
) since only trip T 1

1
does not

visit type 3. Fig. 2(e) shows all three ellipses E ′′
1
, E ′′

2
, E ′′

3
.

5.2.4 Search Region Bound 1.
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Theorem 5.1. �e union of E ji ’s form a bound region R1 for all
trips combined. Any POI outside R1 = ∪i, jE

j
i can be safely discarded,

because it cannot provide a be�er solution than the current candidate
answer.

Proof. (By contradiction) Assume that p is a POI situated out-

side the region R1, and visiting p provides a be�er solution than

the current answer. Without loss of generality, assume jth trip T
j
i

of user ui visits this POI. Since p is outside the union region R1,

it is also outside of E
j
i . By the elliptical property, for any POI p

outside of the ellipse E
j
i , dist(s

j
i ,p)+dist(d

j
i ,p) > TDmax

j
i , i.e., the

major axis of E
j
i (see Fig. 2(a) where p is shown to be outside E1

3

and dist(s1
3
,p) + dist(d1

3
,p) > TDmax1

3
). However, distance of trip

T 1

3
cannot be greater the its upper bound TDmax1

3
. �us, p cannot

provide a be�er solution. Contradiction. �

Hence, we can prune our search region to R1 as POIs outside R1
can’t give us a be�er solution than the current candidate answer.

In Fig. 2(a), R1 is the union of the four ellipses shown.

5.2.5 Search Region Bound 2.
Lemma 5.2. Any POI of type tk outside E ′k can be safely discarded

as this cannot provide a be�er solution than the current candidate
answer.

Proof. (By contradiction) Assume that there is a POI p of type

tk that is outside the region E ′k , and visiting p provides a be�er

solution than the current candidate answer. Since p is outside of

E ′k (an intersection of ellipses), it is outside of at least one ellipse

E
j
i , for which V (i, j,k) = 1. Now, V (i, j,k) = 1 implies trip T

j
i

visits p, and p is outside of E
j
i . However, for any POI outside E

j
i

dist(s
j
i ,p) + dist(d

j
i ,p) > the length of the major axis of E

j
i , the

upper bound for the corresponding trip. �us, it cannot provide a

be�er solution. Contradiction. �

We have proved that for each POI type tk , we can form a bound-

ing region which is the intersection of all ellipses E
j
i such that trip

T
j
i visits that type. Any POI of type tk outside this region can be

discarded safely. �e following theorem shows how we can form a

combined search region for all types.

Theorem 5.3. �e union of E ′k s will form a bounding region R2 for
all types combined. Any POI outside this region R2 = U1<=k<=mE ′k
can be safely discarded, because it cannot provide a be�er solution
than the current candidate answer.

Proof. (By contradiction) Assume that p is a POI of type tk
situated outside the region R2, and visiting p provides a be�er

solution than the current best one. Since p is outside the region

R2, it is also outside of E ′k . �us, according to Lemma 5.2, p cannot

provide a be�er solution. Contradiction. �

Fig. 2(d) shows the search region bound R2 (union of the striped

areas).

5.2.6 Search Region Bound 3.
Lemma 5.4. Any POI of type tk outside the ellipse E ′′k can be safely

discarded because visiting such a POI cannot provide a be�er solution
than the current candidate answer.

Proof. Assume that, there is a POI p of type tk outside the

region E ′′k , and visiting p provides a be�er solution than the current

candidate answer. Since p is outside the ellipse E ′′k and nk trips visit

p, the aggregate travel distance of the nk trips through p will be at

least equal to

∑
i, j,V (i, j,k )=1 (dist(s

j
i ,p) + dist(d

j
i ,p)). Using Lemma

5.3 of [2], we can show that

∑
i, j,V (i, j,k )=1 (dist(s

j
i ,p) + dist(d

j
i ,p))

≥ nk ∗ (dist(s
k
c ,p) + dist(d

k
c ,p)).

However, using the major axis property of ellipse E ′′k , the Euclidean
distance through p from sc and dc is greater than the major axis. We

get, dist(skc ,p) + dist(d
k
c ,p) >

1

nk
(TD −

∑
i, j,V (i, j,k )=0TDmin

j
i ).

So,

∑
i, j,V (i, j,k )=1 (dist(s

j
i ,p) + dist(d

j
i ,p))

> nk ∗
1

nk
(TD −

∑
i,V (i, j,k )=0TDmin

j
i )

= TD −
∑
i, j,V (i, j,k )=0TDmin

j
i .

Rearranging terms, we get

∑
i, j,V (i, j,k )=1 (dist(s

j
i ,p) + dist(d

j
i ,p))+∑

i, j,V (i, j,k )=0TDmin
j
i > TD. �e �rst part of the le� hand side of

the inequality is the aggregate travel distance of all trips that visit p
(V (i, j,k) = 1), and second part is the aggregate travel distance of all

trips that does not visit p (V (i, j,k) = 0). So the le� hand side is the

minimum aggregate travel distance of all trips considering p as part

of a solution and is greater than current aggregate travel distance

TD. Hence p does not give us a be�er solution. Contradiction. �

�e following theorem shows how we can form a combined

bound region using above lemma.

Theorem 5.5. �e union of all ellipses E ′′k form a combined bound-
ing region R3. Any POI outside this bounding region R3 = ∪1≤k≤mE ′′k
can be safely discarded, because it cannot provide a be�er solution
than the current candidate answer.

Proof. Assume that p is a POI of type tk situated outside the

region R3, and visiting p provides a be�er solution than the current

candidate answer. Since p is outside the region R3, it is also outside

of E ′′k . �us, according to Lemma 5.4, p cannot give us a be�er

solution. �

Fig. 2(e) shows the search region bound R3 which is the union

of three ellipses E ′′
1
, E ′′

2
, and E ′′

3
. �e �gure also shows a POI p is

discarded because it is outside the search region.

5.2.7 Combining the three bounds R1, R2, and R3. We form a

combined bounding region R = R1 ∩ R2 ∩ R3. Any POI outside the

region R can be safely discarded, because it is outside of at least one

of the three regions, and therefore can be discarded according to

�eorem 5.1, or �eorem 5.3, or �eorem 5.5. �us, our FastDGTP
algorithm retrieves only those POIs that are inside the region R,
and uses those POIs to compute the optimal answer.

Example. Fig. 2(f) shows a scenario of POI retrieval and POI

reuse by the algorithm in the update phase with respect to user

3’s trip change at a POI p3
2
(Scenario of Fig. 1(b)). �e solid ellipse

(R′) represents the newly computed bound for the search region

while the dashed ellipses comprise the previous bound. �e shaded

region (R′ − R) is the region needs to be retrieved from database.

�e striped region is the region whose POIs are retrieved from the

cache. Note that Fig. 2(f) shows only the search region bounds 3

(Section 5.2.6) for simplicity.

6 EXPERIMENTS
In this section, we evaluate the performance of our proposed

FastDGTP to process DGTP queries in the Euclidean space.
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Table 2: Parameter Settings

Parameters Values Default

Group size (n) 2, 4, 8, 16, 32 8

Number of POI types(m) 2, 3, 4, 5, 6 3

�ery area (A)(in sq. units) 2500, 10000, 22500, 10000

40000, 62500

Data set size (ds )(Number of POIs) 5000, 10000, 15000, −

20000

Data sets.We used the real California road network data set
1
.

�e California data set contains 87635 POIs of 63 di�erent types.

Its road network has 21048 nodes and 21693 edges. Two types of

synthetic data sets were generated using uniform and zip�an distri-

bution for POIs. In our experiments, we normalized its data space

into a 1000x1000 sq. units area. We used an R-tree data structure to

index POIs.

Parameters and experiment settings.We varied the follow-

ing four parameters: (i) total number of users n, (ii) number of POI

typesm, (iii) the query areaA, i.e., the minimum bounding rectangle

covering the source and destination locations, and (iv) size of data

set ds . Table 2 summarizes the range of parameter se�ings and their

default values as per our experiments. For each experiment, we ran

100 randomly generated DGTP queries and computed the average

processing time and average I/O access. All experiments were run

in a computer with core i5 3.2 GHz processor and 6 GB RAM.

6.1 Performance in Processing DGTP query
In this section, we present the comparative performance analyses of

FastDGTP and NaiveDGTP algorithms to process DGTP queries.

We do not compare our approaches with a baseline approach that

applies GTP algorithms for processing a DGTP query because the

most recent and e�cient GTP algorithm [2] cannot handle the

dynamic group behavior.
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Figure 3: E�ect of group size n, number of POI typesm, and
query area A (California data set).

E�ect of n,m, A and ds . Figure 3 shows the query processing

time and I/O overhead incurred by the two approaches in California

data set for di�erent values of n,m and A. Figure 4 shows the same

1
h�ps://www.cs.utah.edu/ lifeifei/SpatialDataset.htm

measures for di�erent values of ds in synthetic data sets. If either of

n,m,A and size ds increases, the processing time increases for both

approaches. For all experiments, the I/O of NaiveDGTP is constant

since it does not use any pruning bound, and uses entire data space

to compute the optimal group trip. We estimated that FastDGTP
takes on average approx. 2 orders of magnitude less time and 1

order of magnitude less I/O for n, 3 orders of magnitude less time

and 3 orders of magnitude less I/O form, 2 orders of magnitude

less time and 1 order of magnitude less I/O for A and 2 orders of

magnitude less processing time and 2 orders of magnitude less I/O

for ds than the naive approach.
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Figure 4: E�ect of data set sizeds . (a),(c) uniformdistribution,
(b),(d) zip�an distribution.

7 CONCLUSION
In this paper, we proposed an e�cient approach to evaluate dy-

namic group trip planning (DGTP) queries for the Euclidean space.

Extensive set of experiments on real and synthetic datasets shows

that our approach is on the average 99.74% faster and requires 94%

less I/Os than the naive approach. We developed novel pruning

techniques to re�ne the POI search space by exploiting elliptical

properties, and dynamic programming techniques to compute the

DGTP query answer that minimizes the aggregate travel distance

for a dynamic group. In the future, we aim to extend our approach

to handle the dynamic change of POI types such as visiting a new

POI type in real time a�er the start of the group trip.

REFERENCES
[1] Elham Ahmadi and Mario A. Nascimento. 2015. A Mixed Breadth-Depth First

Search Strategy for Sequenced Group Trip Planning�eries. In MDM. 24–33.

[2] TanzimaHashem, Sukarna Barua, Mohammed Eunus Ali, Lars Kulik, and Egemen

Tanin. 2015. E�cient Computation of Trips with Friends and Families. In CIKM.

931–940.

[3] Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and Lars Kulik. 2013.

Group Trip Planning�eries in Spatial Databases. In SSTD. 259–276.
[4] Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, Lars Kulik, and

Egemen Tanin. 2016. Trip Planning �eries for Subgroups in Spatial Databases.

In ADC. 110–122.
[5] Feifei Li, Dihan Cheng, Marios Hadjiele�heriou, George Kollios, and Shang-Hua

Teng. 2005. On Trip Planning�eries in Spatial Databases. In SSTD. 273–290.
[6] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. 2008. �e

optimal sequenced route query. �e VLDB Journal 17, 4 (2008), 765–787.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 A naive approach: NaiveDGTP
	5 An efficient approach: FastDGTP
	5.1 Computation of Heuristic Answer
	5.2 Computation of Search Region Bounds

	6 Experiments
	6.1 Performance in Processing DGTP query

	7 Conclusion
	References

