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Battery Safety Modeling
• The internal short circuit leading to thermal runaway must be mitigated under all 

conditions.

• Short circuit events pose a major safety risk for industry applications (e.g., EVs, laptops, 
mobiles).

• Understanding peak temperature and time is important preventing thermal runaway.

Thermal runaway limit 



Thermal runaway event

• A short circuit condition in Li-ion batteries where:
– sudden rise in temperature (T) for increased mechanical load
– once reach its thermal limit can cool upto normal operating conditions
– may continue to stay/elevated till load reduce or voltage increase
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Showing different physics 
properties for different 
mechanical load 
conditions.

- How to have a model to 
adapt such contexts?



Challenges for Thermal Runaway Detection
• Temperature responses significantly vary among battery properties (materials, 

SoC, capacity)
• Thermal runaways are rare events (destructive data collection process)
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Challenges with DL Models

Generalization Technique 1: Incorporate Battery properties to the model
 



Generalization Technique: Incorporate Side Information

• Off the shelf ML models fails to generalize 
– physics properties
– Battery properties (material, state-of-charge, capacity)

Forecast obtained by a sequential deep-learning model for two 
different materials



Invariant Encoding
Our goal: Marginalize distribution shifts in input across battery properties
  - material, SoC, capacity 



Predictor

• Incorporate the additional invariant features.
• How it is different from GAN models?

- Unlike generator invariance will be trained 
twice:
- adversarial for learning invariance
- predictor for improving predictions



Can Invariance Generalize for Seen and Unseen Soc Context?



Does Invariance Generalize for Thermal Runaway Properties?  

LFP, 70% SOC NMC, 50% SOCLFP, 100% SOC

Seen material, seen SoC Seen material, unseen SoC unseen material, seen SoC

Except our model, all other models fail to capture thermal 
runaway properties:
     - having multiple peaks
     



Does Our Invariant Model Actually Learn Invariance?

Heatmap plot of the gradients of our model, our model w/o adversarial training, 
and LSTM w.r.t. seen LCO, LFP, unseen NMC cathode material

Our model is less sensitive across both seen and unseen material 



Sensitivity Across Weak vs Strong Out-of-Distribution (OoD) Cases

Plots of our model AIDC compared to LSTM for weak and strong out-of-distribution (OoD) data on a 

different experimental setting unseen during training. 

LSTM completely fails to generalize or predict temperature peaks or thermal runaways for all OoD (flat 
green).
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Key points and Observation
• Invariant encoding

– generalize to unseen battery properties
– shared learning across different battery properties
– can aid in improving prediction performance by marginalizing distribution shifts 

across different domains



         Thank you


	Slide 1: Counter Data Paucity through Adversarial Invariance Encoding: A Case Study on Modeling Battery Thermal Runaway
	Slide 2: Battery Safety Modeling
	Slide 3: Thermal runaway event
	Slide 4: Challenges for Thermal Runaway Detection
	Slide 5: Challenges with DL Models
	Slide 6: Generalization Technique: Incorporate Side Information
	Slide 7: Invariant Encoding
	Slide 8: Predictor
	Slide 9: Can Invariance Generalize for Seen and Unseen Soc Context?
	Slide 10: Does Invariance Generalize for Thermal Runaway Properties?  
	Slide 11: Does Our Invariant Model Actually Learn Invariance?
	Slide 12: Sensitivity Across Weak vs Strong Out-of-Distribution (OoD) Cases
	Slide 13: Key points and Observation
	Slide 14:           Thank you

