Counter Data Paucity through Adversarial Invariance Encoding: A Case Study on Modeling Battery Thermal Runaway

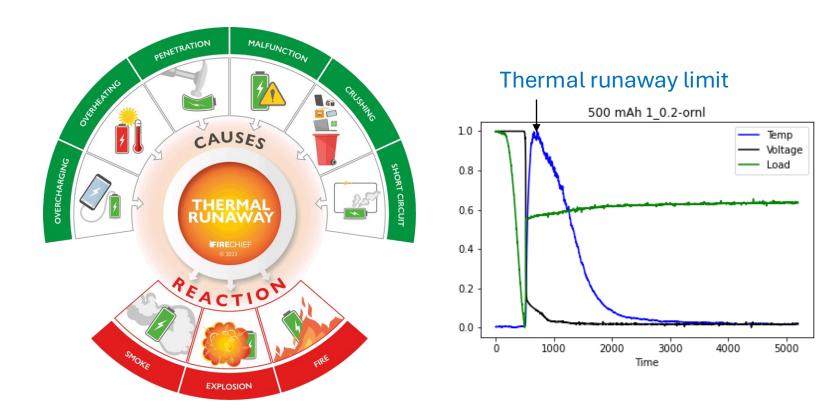
Anika Tabassum, Srikanth Allu, Ramakrishnan Kannan, Nikhil Muralidhar

Code and Dataset: github.com/anikat1/battery-invariance-learning

IEEE BigData 2024, Dec 15-18, Washington DC, USA

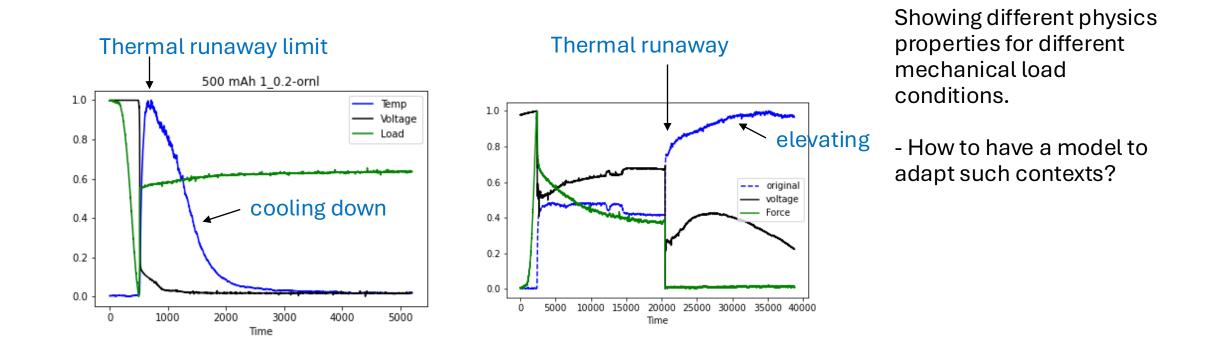
Battery Safety Modeling

- The internal short circuit leading to thermal runaway must be mitigated under all conditions.
- Short circuit events pose a major safety risk for industry applications (e.g., EVs, laptops, mobiles).
- Understanding peak temperature and time is important preventing thermal runaway.



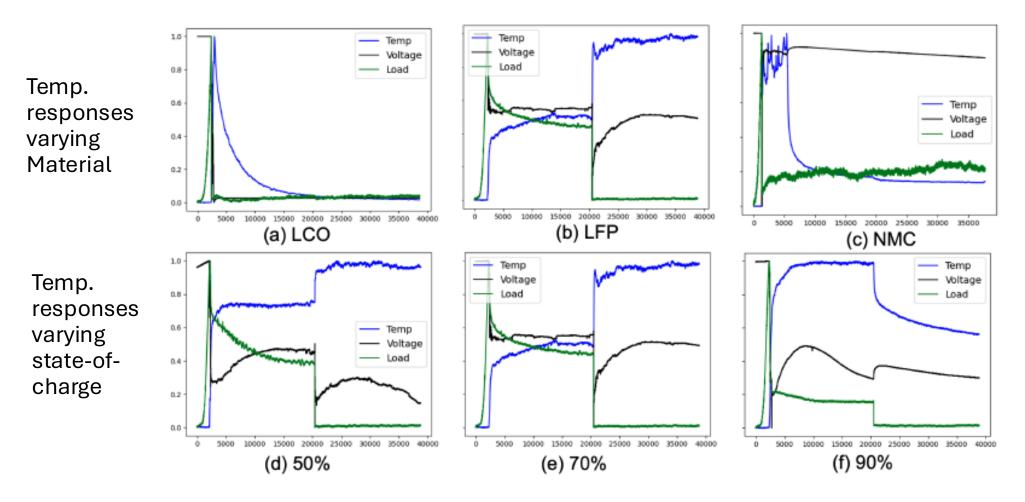
Thermal runaway event

- A short circuit condition in Li-ion batteries where:
 - sudden rise in temperature (T) for increased mechanical load
 - once reach its thermal limit can cool upto normal operating conditions
 - may continue to stay/elevated till load reduce or voltage increase



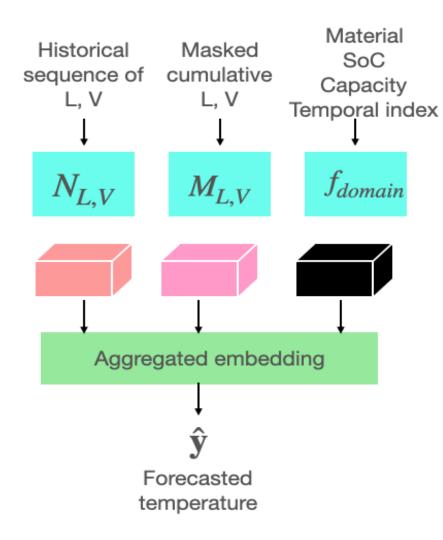
Challenges for Thermal Runaway Detection

- Temperature responses significantly vary among battery properties (materials, SoC, capacity)
- Thermal runaways are rare events (*destructive* data collection process)



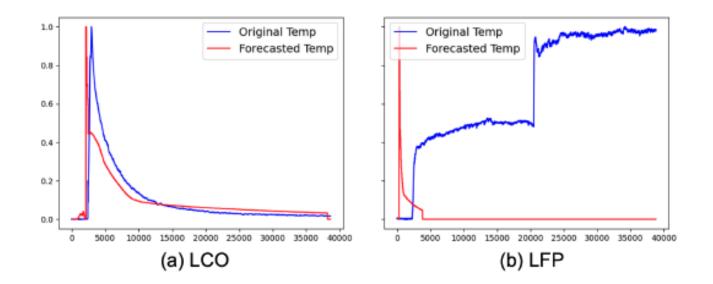
Challenges with DL Models

Generalization Technique 1: Incorporate Battery properties to the model

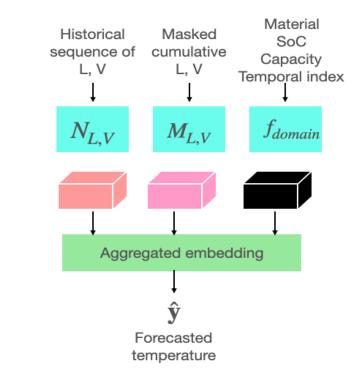


Generalization Technique: Incorporate Side Information

- Off the shelf ML models fails to generalize
 - physics properties
 - Battery properties (material, state-of-charge, capacity)

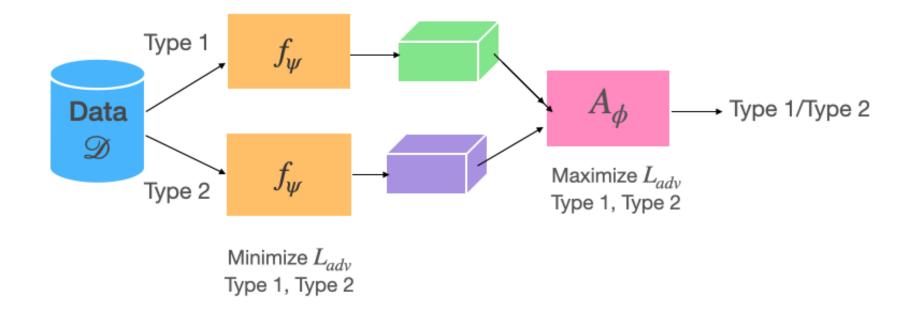


Forecast obtained by a sequential deep-learning model for two different materials



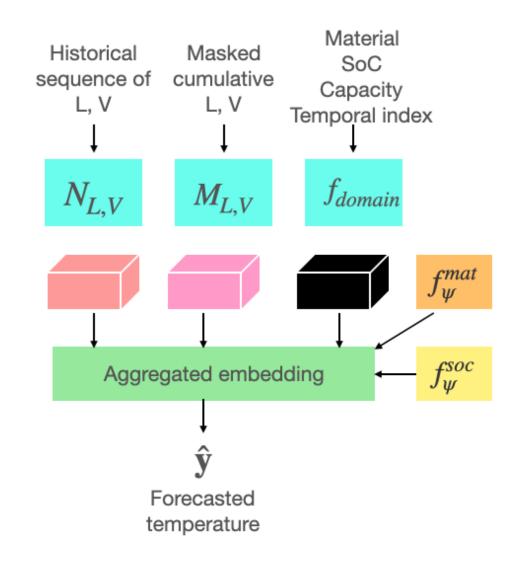
Invariant Encoding

Our goal: Marginalize distribution shifts in input across battery properties - material, SoC, capacity



Predictor

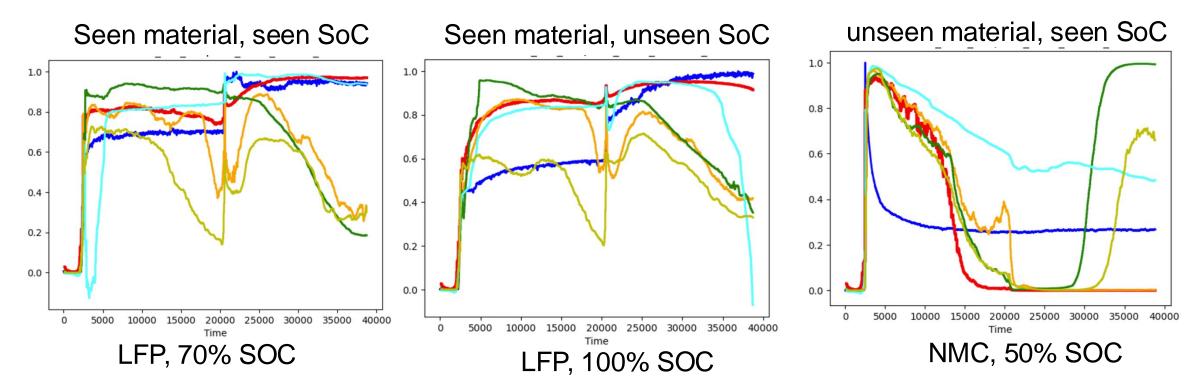
- Incorporate the additional invariant features.
- How it is different from GAN models?
 - Unlike generator invariance will be trained twice:
 - adversarial for learning invariance
 - predictor for improving predictions



Can Invariance Generalize for Seen and Unseen Soc Context?

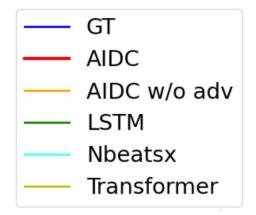
Case	Model	RMSE	MAPE	DTW	EM	Peak_m	Peak_t
Seen	LSTM	0.28	0.238	39.425	0.156	0.049	0.207
material	NBeatsX	0.147	0.099	5.9	0.095	0.013	0.025
seen	Transformer	0.284	0.232	36.8	0.225	0.153	0.254
SOC	AIDC (w/o adv)	0.202	0.148	26.715	0.106	0.062	0.026
	AIDC	0.113	0.098	7.486	0.094	0.032*	0.16
Seen	LSTM	0.253	0.2	30.94	0.143	0.072	0.29
material	NBeatsX	0.434	0.289	46.962	0.242	0.056	0.133
unseen	Transfomer	0.291	0.235	43.53	0.226	0.212	0.161
SOC	AIDC (w/o adv)	0.302	0.241	39.611	0.194	0.0823	0.184
	AIDC	0.156	0.111	8.164	0.108	0.061	0.099
Unseen	LSTM	0.27	0.201	34.401	0.176	0.258	0.378
material	NBeatsX	0.259	0.224	27.243	0.198	0.057	0.014
seen	Transformer	0.231	0.166	27.95	0.163	0.417	0.015
SOC	AIDC (w/o adv)	0.26	0.190	18.766	0.183	0.323	0.014
	AIDC	0.21	0.166	14.623	0.158	0.204	0.013

Does Invariance Generalize for Thermal Runaway Properties?

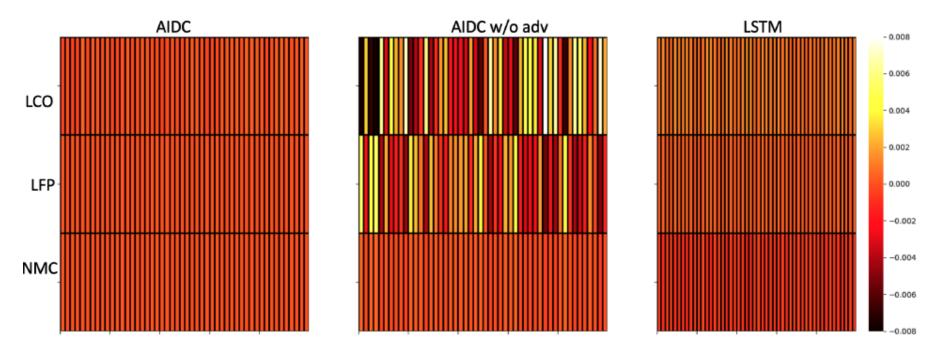


Except our model, all other models fail to capture thermal runaway properties:

- having multiple peaks



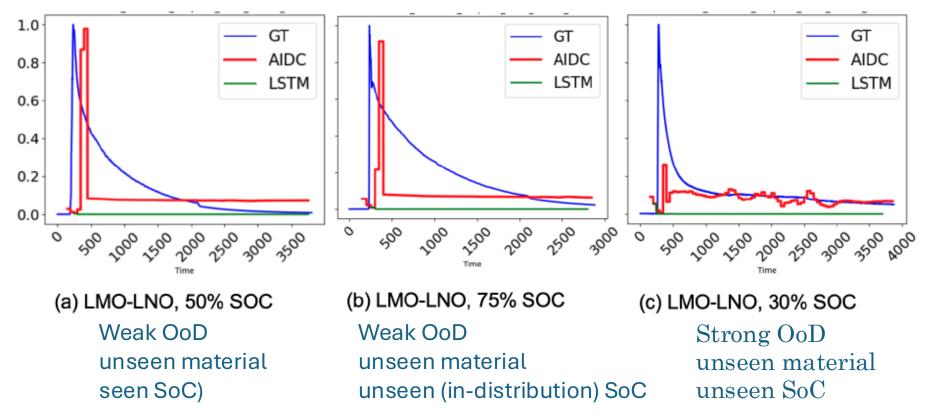
Does Our Invariant Model Actually Learn Invariance?



Heatmap plot of the gradients of our model, our model w/o adversarial training, and LSTM w.r.t. seen LCO, LFP, unseen NMC cathode material

Our model is less sensitive across both seen and unseen material

Sensitivity Across Weak vs Strong Out-of-Distribution (OoD) Cases



Plots of our model *AIDC* compared to LSTM for weak and strong out-of-distribution (OoD) data on a different experimental setting unseen during training.

LSTM completely fails to generalize or predict temperature peaks or thermal runaways for all OoD (flat green).

Key points and Observation

- Invariant encoding
 - generalize to unseen battery properties
 - shared learning across different battery properties
 - can aid in improving prediction performance by marginalizing distribution shifts across different domains

Thank you

