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Problem and Motivation

= Deep learning (DL) based models are effective but often come with
increased computational cost and high memory requirements.

= DL combined with Internet of Things (IoT), healthcare, and smart
manufacturing means large models are infeasible due to their high
computation requirements.

= Previous work has proposed decision cascades (Wang et al. 2017).

= But cascaded architectures lead to wasted intermediate
computation.

= A more flexible and cost-aware approach can efficiently balance
cost with performance.
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Application: Battery Manufacturing

= Lithium-ion batteries are used in many applications (smartphones, cars, etc)
= The electrode coating of these batteries consist of different material types

= Manufacturing imperfections cause pores to form

= Identifying the pores and materials can determine the quality of the battery

= Researchers have created DL models like MatPhase (Tabassum et al. 2022) to identify materials in
battery CT images

= These models are large and expensive to run
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PaSeR: Parsimonious Segmentation with RL

= Flexible, cost-aware reinforcement learning (RL) based pipeline as an alternative to a cascaded
architecture

Large UNet
Input Image Small UNet P1 Pe | "
t y2!
| | M |
| 4 | Zl ;7 I &Ps
v v} .
H1H S 1l I b
P - W i f"
Pri Py P3: Ps e (T T K
fO Py f
Psi Ps i P7 i Pg Pisi f 2
P Jo <
Py P Pui P2 Medium UNet
vP1s
Pi3; pui Pisi Pis ”% H yz
P15
c b e . Reward (R) T |
R= ) (1-MAGP 5% — AC(H) ™ Accuracy + cos by ol
j=0 k—Y—/ S 1 P
Prediction Prediction f1 !
Performance Cost

¥ for—sl Aggregate
predictions
|

4 STEVENS INSTITUTE of TECHNOLOGY



PaSeR Reward Function

= Assuming m+1 task models

{f07f17"°7fm}

= PaSeR optimizes the reward function

P
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PaSeR Accuracy Function

= For segmentation our accuracy function is:

AR 332) =10y ™) = ToU ),y )

= Intersection over Union (IoU):

|AN B| Area of Overlap J
loU =

IoU (A, B) =

|AU B| Area of Union
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PaSeR Cost Function

= Qur cost function is:

numParams( f;)
> ;- numParams( f;)

C(fi) =
= Use )\ to trade-off performance and computation.
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Monte-Carlo Dropout Entropy Estimation

= Use Monte Carlo Dropout for entropy estimation

= PaSeR works well with even a small number of samples
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Battery Phase Segmentation Results

= We introduce a novel metric called IoU/GigaFlop: the ratio of segmentation performance to
computational cost in GigaFlops.
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Battery Phase Segmentation Results

PaSeR outperforms all baselines on the IoU/GigaFlop metric by a minimum of 174% and is within

8% of the best model in terms of IoU.

Battery
Model IoU Flops IoU/GigaFlop
Matphase (Tabassum et al. 2022)  0.8144 2.11 x 10*? 0.39 x 1072
DeepLabV3+ (Chen et al. 2018b)  0.7817  1.55 x 10*2 0.51 x 1073
SegFormer (Xie et al. 2021) 0.7692  5.84 x 10** 1.32 x 1073
EfficientViT (Cai et al. 2022) 0.7765  4.34 x 10*! 1.79 x 1073
IDK-Cascade (Wang etal. 2017)  0.6987  4.20 x 10** 1.66 x 1072
PaSeR-RandPol. 0.7234  5.33 x 10" 1.36 x 1073
PaSeR (ours) 0.7426  1.51 x 10'*  4.91 x 1073
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Adaptability to Complementary Models - MNIST

PaSeR adapts to complementary models
Add noise to MNIST dataset

Train each model on its own noise type

Original Image Gaussian Blur R=1  Gaussian Blur R=2 Box Blur
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Adaptability - MNIST

= PaSeR has nearly perfect assignment

= IDK Cascade model makes more mistakes
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Noisy MNIST loU/GigaFlop Results

PaSeR outperforms all baselines in terms of IoU/GigaFlop and achieves an IoU that is within 2.3%
of the best performing model.

Noisy MNIST
IoU Flops IoU/GigaFlop

Matphase (Tabassum et al. 2022) — — _
DeepLabV3+ (Chen et al. 2018b)  0.8459  2.07 x 10*° 4.08 x 107°

Model

SegFormer (Xie et al. 2021) 0.8448  7.56 x 102 1.12 x 1074
EfficientViT (Cai et al. 2022) 0.8344  3.72 x 104 2.24 x 107°
IDK-Cascade (Wang et al. 2017) 0.7750  1.15 x 10*® 6.73 x 107°
PaSeR-RandPol. 0.6376  7.05 x 10*? 9.05 x 107°

PaSeR (ours) 0.8231  6.51 x 10*? 1.27 x 10~4
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Conclusion

= We develop a novel, computationally parsimonious RL based model to balance computational cost
with task performance.

= Experiments on battery phase segmentation data and noisy MNIST data show that PaSeR yields
competitive performance with SOTA segmentation models while also having the highest IoU/GigaFlop.

= We demhonstrate the flexibility of the PaSeR RL policy to adapt to task models with complementary
strengths.

= We introduce a novel metric IoU/GigaFlop which measures the segmentation performance obtained per
GigaFlop of computation expended.

= Qur code is located at: https://github.com/scailab/paser
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https://github.com/scailab/paser

References

1. Wang, Xin, et al. "Idk cascades: Fast deep learning by learning not to overthink." arXiv preprint
arXiv:1706.00885 (2017).

2. Tabassum, Anika, et al. "MatPhase: Material phase prediction for Li-ion Battery Reconstruction
using Hierarchical Curriculum Learning." 2022 IEEE International Conference on Big Data (Big
Data). IEEE, 2022.

3. Chen, Liang-Chieh, et al. "Encoder-decoder with atrous separable convolution for semantic image
segmentation." Proceedings of the European conference on computer vision (ECCV). 2018.

4. Xie, Enze, et al. "SegFormer: Simple and efficient design for semantic segmentation with
transformers." Advances in Neural Information Processing Systems 34 (2021): 12077-12090.

5. Cal, Han, et al. "EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction."
arXiv preprint arXiv:2205.14756 (2022).

6. Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model
uncertainty in deep learning." International Conference on Machine Learning. PMLR, 2016.

4 STEVENS INSTITUTE of TECHNOLOGY 15



\

4

STEVENS

TTTTTTTTTTTTTTTTTTTTT
1870

Thank You!




Application: Battery Manufacturing

X-ray Nano-CT Image

= Lithium-ion batteries are used in many industrial applications.

= The electrode coating of these battery cathode consists of
active materials and polymeric binders.

= Due to the imperfections during manufacturing, small pores
are also present.

= Finding phase transitions of these active materials, binders,
and pores helps to estimate the overall quality of the battery.

Active
Material

= Researchers have created DL models like MatPhase
(Tabassum et al. 2022) which use low resolution CT images of
the battery to identify the composite battery materials.

Binder
Material

Full Reconstruction is Expensive
but Accurate

= This model is computationally expensive to run at inference
time.

*Image Courtesy( Lu et al. 2020)

Cheaper X-ray Micro-Tomography Image poses for harder /
significantly less accurate reconstruction
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Reinforcement Learning as a Parsimonious Alternative to
Prediction Cascades

= Recent advances in Deep Learning (DL) have lead to state of the art (SOTA) performance on
computer vision tasks such as object detection, classification, and image segmentation.

= Many of these modern DL models are large (over-parameterized) and monolithic.

= While these large models lead to better performance, they are computationally expensive and
memory intensive even during inference.

= Insettings such as smart manufacturing, we cannot afford to always run such large models on the

factory floor.
= For many modern applications, we have a hierarchy of compute where efficient small models are

locally available while large models are in the cloud.
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