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ABSTRACT

Electric utilities are driving towards enabling automatic
scheduling and control of the consumption pattern of ap-
pliances such as heating, ventilation, and air conditioning
(HVAC) and water heater (WH) systems (e.g., through pre-
heating and pre-cooling, etc.) within smart neighborhoods
to minimize energy cost and peak load demand. Quanti-
fying economic savings through direct comparison of the
optimized energy usage profile on a specific day with the
typical non-optimized usage profile on another day is not
a fair comparison because energy usage highly depends on
weather conditions and human behaviour especially appli-
ance like HVAC on those days. In this paper, we propose
a novel approach of identifying similar weather day pairs
which can then be used to compare the energy use profiles
within homes between the identified pairs. We then demon-
strate how the proposed approach can be used to compute
cost savings due to optimization and control of smart ap-
pliances at home and neighborhood-level within a future-
focused smart neighborhood of 62 residential homes. We
also demonstrate a simulation based approach to quantify
cost savings and showcase our findings through customized
and interactive visualizations.
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1 INTRODUCTION

The recent development of Internet of Things (IoT) tech-
nologies and big data solutions combined with the rapid
modernization of the electric grid, (such as the integration
of distributed energy resources (DER)), provides an unprece-
dented opportunity to optimize energy usage. The combina-
tion of these technologies within the scope of smart homes
provides a channel for innovation in energy optimization
tailored to residential energy usage patterns.

Smart sensors and appliances enable real-time data collec-
tion which can be used in optimizing and predicting energy
consumption. HVAC accounts for a large portion of a home’s
electricity consumption (32% in US homes [5]) and also con-
tributes to summer and winter peak power usage during
extreme weather periods. Peak power periods often require
the use of expensive peaker plants that are only used for a
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handful of days per year [6]. This results in electric utility
generation costs to be exponentially higher during these pe-
riods. To help offset these costs and discourage electricity use
during typical peak hours, electric utilities offer Time of Use
(TOU) pricing to customers. TOU pricing is typically cheaper
than the standard rate during off-peak hours and more ex-
pensive during peak demand times (typically between 10
a.m. to 7 p.m) [3]. A lot of literature focuses on optimizing
smart devices such as HVAC within IoT space [12, 15].

In 2017, Southern Company, a major public electric utility,
in collaboration with the US Department of Energy (DOE)
and Oak Ridge National Laboratory (ORNL), planned the
development and demonstration of a neighborhood-level
transactive energy and controls research platform to explore
grid integration, distributed control and end-use energy man-
agement [10]. This Smart Neighborhood™ of 62 homes is
currently powered by both the traditional electric grid as well
as a co-located microgrid, which is composed of solar panels,
battery storage and a natural gas generator. This microgrid
is capable of powering the entire community if necessary [4].
The goal is to co-optimize energy cost, comfort, environ-
ment, and reliability by controlling grid generation assets
and homeowner end devices through transactive control.
By the end of 2018, the neighborhood was operational with
active dispatch and control of smart appliances, such as in-
telligent HVAC and heat pump water heater systems. The
neighborhood is being operated with optimization dispatch
enabled for a week followed by a week with optimization
dispatch disabled (baseline) to collect sufficient baseline and
optimization data for comparison.

The approach for optimization at the Smart Neighborhood
includes a house-level and microgrid optimization. The mi-
crogrid provides a 24-hour electricity price forecast to all
of the homes. The house-level optimization then uses that
price forecast along with the weather forecast, building and
equipment models to optimize their usage to minimize costs.
The homeowner’s comfort constraints are read directly from
the heating and cooling set points stored in the schedule
programmed into their thermostats. A mixing valve on the
outlet of the WH allows the optimization to store additional
energy in the water heating by heating to a higher tempera-
ture, while ensuring the hot water delivered to the house is
not too hot. The power forecasts from all of the house-level
optimization are aggregated and returned to the microgrid
controller. If the load-shape is not desirable, the microgrid
adjusts its 24-hour price forecast and sends it back to homes.
This iterative process continues until the desired load shape
is achieved or the load shape no longer changes significantly
to changes in price (meaning occupant comfort limits will
not allow any further load shifting). Additional details on the
optimization, agent-based framework, and communications
can be found in [14]. This optimization dispatch process is
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expected to yield significant cost savings for the utility as
well as customers which we aim to quantify systematically
and study the pros and cons of optimization.

In this paper, we propose to address the problem of quan-
tifying cost savings due to the automatic control and op-
timization of WH and HVAC energy usage through novel
approaches. We apply several statistical techniques and sim-
ulation based model to detect and quantify the cost savings
when optimization is applied to the smart neighborhood by
controlling their HVAC and WH settings. For the similar
weather identification model that is based on statistics, we
perform a direct comparison of the energy usage between
pairs of similar weather days/weeks determined. For the sim-
ulation based model, we simulate the energy usage by com-
puting how much energy would be typically required to keep
the user within a defined comfortable temperature range for
HVAC and WH system without optimization and control
and comparing this with the Home Climate System (HCS)
model when it is enabled and the HVAC and WH systems
are optimized and controlled. Our initial findings indicate
that significant cost savings can be obtained through HVAC
and WH optimization and control by using these models for
more accurate quantification of cost savings.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the two approaches taken to quantify cost
savings through optimization and control of HVAC and WH
systems. This will include the statistical techniques to iden-
tify similar weather day/week pairs using several weather
attributes as well as simulation based techniques. In Section 3,
we discuss the HVAC cost savings obtained after application
of these approaches within the Alabama connected neighbor-
hood. In Section 4, we present the three bucket visualization
dashboard to demonstrate the comfort, cost and the peak de-
mand impacts at a home-level using approaches described in
the previous section. Section 6 summarizes our contributions
and discusses future work.

2 METHODS

In order to quantify the energy cost savings of our optimiza-
tion, a baseline is needed to ensure that the comparison is
reasonable. We propose two different approaches to establish
baselines for comparison of HCS effectiveness.

Since energy demand highly depends on weather con-
ditions [8, 13], we develop a methodology to calculate the
similarity of two dates by leveraging various sensor data (e.g.,
ambient temperature, global horizontal irradiance (GHI), rel-
ative humidity, wind speed, rainfall, etc.) collected from a
weather station located at the microgrid near the neighbor-
hood. Details will be discussed in Section 2.1.
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In addition, we develop a simulation based baseline model
that can be used for the comparison. The inputs for the simu-
lation model (such as weather forecast, comfort constraints,
building parameters, etc.) are same as the those used for the
optimization model deployed within smart homes, but is
intended to estimate the typical operation of the equipment.
This approach allows a baseline day to be created that has
identical weather, comfort limits, occupancy profiles, etc.
Details will be discussed in Section 2.2.

2.1 Calculating Weather Similarity

We propose the identification of similar weather days/weeks
pairs as an approach to compare energy consumption during
the pair days with and without optimized control of HVAC
with the assumption that power consumption patterns for
HVAC of similar weather days will be comparable. To com-
pute the pair dates, we consider weather based parameters
that directly affects the comfort of the user. Extreme weather
events manifest as changing weather parameters such as
temperature, humidity etc which will be used as features for
the computation of paired dates.

To calculate weather similarity, weather needs to be for-
mally defined. We define weather of a specific time period p
as a set of arrays W = {sy, s2, .. . sp}, where each array s; is a
time-series data collected from a sensor (e.g., thermometer,
humidity sensor) for the specific time period p and n is the
number of sensors. If we assume that the data is collected
every 5 minute, when p is a 1-day period, the |s;| will be 288
(12x24). If p is a 1-week period, then the [s;| will be 2016
(12x24x7). For example, let us assume that we employ two
sensors, temperature and humidity sensors. If we pick the
1st January of 2019, the weather on this day is represented as
a set of arrays Wo1/01/2019 ={Stemperatures Shumidiry }> Where
|stemperature| =12Xx 24 and |shumidity| =12Xx24.

Now the quantification of similarity of weather of two peri-
ods (e.g., two days or two weeks) is done as follows. Let us say

that weather of period p; is W; = {s(;,1), - - -»S(i, k) - - - > S(i,m) }
and p; is W; = {5(j,1), S(,1)» - - - S, k)» - - - S, n) JrESpectively,
and s; x and s; ;. constructed from the same sensor (e.g., tem-
perature sensor). Similarity of two given arrays u and v,
S(u, v) can be quantified in many ways as follows.

o Average of Mean Absolute Error (MAE): We measure
the MAE [16] for every pair of elements with the same
index in u and v and compute the average of MAEs.
The value becomes zero if all elements are identical.

e Euclidean distance (ED) is the distance between two
points in Euclidean space and calculated using the
equations below ED = ¥ (|(u; — v;)|?))"/2. The value
becomes zero if two points are identical.

e Correlation is used to measure the dependency be-
tween two variables or in this case time series [11]. We
explored three types of correlations including Kendall
[1], Pearson [2], and Spearman [7]. Correlation values
generally ranges from negative one to one. Correla-
tion value of zero indicates that the time series are not
correlated at all and value of one indicates that they
are perfectly correlated.

e Dynamic Time Warping (DTW) measures distance
between two time series, and matches shapes while
taking time shifting into account [9].

With a similarity measure S, we can quantify the similarity
of two arrays collected from each type of sensor on different
periods p; and p; by calculating S(s(; 1, 5¢j,1))> S(5(i,2)> S(j,2))>
eey S(S(i,n), S(j,n)).

Each method results in different range. Thus, we normalize
using the minimum and maximum scaler to scale scores to
the given range. The normalized similarity values ranges
from zero to one, where one means identical and zero means
the opposite and calculate the weighted summation to have
a aggregated similarity score (Xwy, wy, ..., w, = 1). We can
use the same weights for all sensors or give more weights to
certain sensor data (e.g., temperature and humidity) using
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domain knowledge of experts’ feedback. Note that we can
use multiple similarity measures together by doing one more
level of weighted summation by giving different weights to
different similarity measures.

We implemented the weather similarity calculation in
Python. Assigning weights to different sensors and similarity
measures can affect the similarity measure; however, finding
the optimal weights is out of this paper’s scope. We will
discuss the details of our results in 3.1.

2.2 Simulation Model

To compare the effectiveness of the HCS optimization, we
simulate the operation of the equipment without the opti-
mization dispatch. This baseline simulation uses the same
inputs as the optimization (weather forecasts, building model
parameters, comfort requirements, etc.) and the same models
as the optimization, but with control algorithms that mimic
that of typical operation. Since the baseline simulation uses
the same inputs as the optimization, the results of the two
approaches can be directly compared without concerns of
differences in weather or occupant behavior. This approach
eliminates the error associated with inaccuracy of weather
forecasts and building and equipment models. The price
forecast that was used by the optimization is applied to the
baseline simulation to calculate the energy cost associated
with non-optimized operation. The accuracy of the forecasts
and model parameters used in both the optimization and
baseline simulation will ultimately affect the cost savings
that are realized in the actual homes.

The simulation model consists of two modules: compu-
tation of electrical energy needed to maintain temperature
settings for the HVAC shown in Figure 1(a), and a computa-
tion of the energy needed for the WH shown in Figure 1(b).
We discuss these two modules in detail.

The HVAC model is composed of three components:

o Building thermal model —this is a "grey-box" model
that is used to represent the heat transfer dynamics
of the building. A detailed schematic of the model can
be found in [14]. The building model and parameters
used in the baseline simulation are identical to those
used in the optimization.

e HVAC model —this consists of polynomial regressions
of manufacturer performance data for power and heat-
ing/cooling capacity of the equipment. Since the HVAC
system utilizes a variable speed compressor, polyno-
mials are used to capture the minimum and maximum
power and capacity as a function of outdoor air tem-
perature. The HVAC model used for the baseline sim-
ulation is identical to that used in the optimization.

e Thermostat model —this is used to control the HVAC
system based on the indoor temperature. The cooling
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set point schedule used in the optimization is used
as the set point for the thermostat. The thermostat
controls the HVAC capacity based on how close the
indoor temperature is to the set point.

The general flow of the baseline simulation is shown in Fig-
ure 1(a). At time ¢, the thermostat determines the HVAC
capacity based on the current indoor temperature. This ca-
pacity is then used along with the weather forecast data at
time ¢ by the building model to calculate the new indoor
air temperature (in addition to other building temperatures)
at time t + 1. The HVAC model is then used to calculate
the energy use of the HVAC system for the time step. The
energy use is multiplied by the electricity price from the
optimization for the given time.

The WH model is composed of three components similar
to those of the HVAC model:

e Water tank thermal model —this is "grey-box" model
that is used to represent the heat transfer dynamics of
the hot water storage tank. The baseline simulation
uses a two-node model to simulate the upper and lower
tank temperatures separately. The optimization uses
a simpler single-node model due to its linearity and
ensured convergence to the global minimum during
optimization. While the tank models have different
structures, the overall thermal resistance and thermal
capacitance of the WH models are identical.

e Heat pump performance model —this consists of lin-
ear regressions of the heat pump capacity and power
use based on empirical data. Since the WH uses a heat
pump, the performance of the heat pump is depen-
dent on the ambient temperature and temperature of
the water in the tank. Both the optimization and the
baseline simulation use an assumed, fixed ambient
temperature and the average tank temperature as the
water temperature.

Thermostat model —this consists of control logic that

turns on the heat pump and the two auxiliary heating

elements (upper and lower) based on the upper and
lower tank temperatures and the WH set point. This
control logic was derived based on empirical data.

The general flow of the baseline simulation for the WH is
shown in Figure 1(b) in similar fashion to that of the HVAC.
At time ¢, the thermostat model is used to calculate the oper-
ating mode of the heat pump water heater (i.e., heat pump
or resistance heating) based on the current tank tempera-
tures. The heat pump performance model is then used to
calculate the heating capacity delivered to the tank, or if a
resistive heating element is on, its fixed capacity is used. The
water tank thermal model is then used to calculate the tank
temperatures at time ¢ + 1 based on the heat loss from the
tank, any heat added by the heat pump or resistive heating
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elements, and any heat drawn from the tank in the form of
hot water delivered to the house. The energy use by the WH
is then calculated using the heat pump performance model
or the fixed energy use of the resistive heating element for
the time step.

3 RESULTS
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Figure 2: Plots of Ambient Temperature for each date
pair 2(b)- 2(c), and for April 16th and April 21st (Easter
Holiday) shown in 2(d). The first date of every date
pair is shown in green and second date of every date
pair is displayed in orange.

In this section, we analyze 62 participant homes in the
same neighborhood in Alabama over a 4 month period span-
ning from the start of April to the end of July. We focus on en-
ergy cost comparison for HVAC since energy usage patterns
of HVAC are more correlated with weather than the WH.
We present the results of our similar weather days/weeks
identification software implementation in section 3.1. Then,
the results of simulation models are discussed in section 3.2.

3.1 Similar Weather Pairs (Days/Weeks)

We use three weather attributes (ambient temperature, GHI,
and relative humidity) and six similarity measures described
in Section 2.1. We assign equal weights to the attributes and
similarity measures.

The plots of ambient temperature for the top two most
similar day pairs which are a paired dates of May 25th and
June 3rd, and a paired dates of May 26th and June 3rd as
shown in 2(a) and 2(b). The plot for date pair with the lowest
similarity score, May 9th and June 4th, is shown in Figure 2(c).
The plots for the most similar days show that the time series
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follow similar patterns and have minimal distance between
each other, while the plots for dissimilar days show one time
series with a distinct pattern than another and the distance
between each other is rather large. For instance, the pair
date of May 25th and June 3rd has very low values of MAE
and ED for ambient temperature and relative humidity, but
higher values for GHI. This shows promising results in the
developed similar weather days computation.
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b3 L\\/}‘ \\J ‘\,\\‘3/ \,\//\ §5 /ﬂt
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index index
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Figure 3: Plots of Ambient Temperature shown for
each week pair 3(a)-3(b). The first week of every 7 days
pair is shown in maroon and the second week in a pair
is displayed in blue.

While analyzing the most similar weather days is an effec-
tive approach, considering most similar weeks can be also
useful. For instance, April 16th and April 21st very similar
weather features shown in Figure 2(d). These traits suggest
that energy usage patterns would be very similar on the two
dates. However the total energy usages on the April 21st
is much higher than that of the April 16th. We identify the
spike in energy usage on the April 21st is due to the differ-
ences in the day of the week. April 16th is a weekday while
April 21st is a Easter holiday where participants would likely
spend more time at home and use more energy. With these
findings, we consider to identify similar weather for weeks.

We found the weeks of May 23rd-May 29th and May 30th-
June 5th to be the most similar in terms of weather patterns
which can be seen in Figure 3. Figure 3(a) show the similar
patterns of ambient temperature and the similarities are
contrasted by the discrepancies occurring the less similar
weeks pairs of April 25th-May 1st and May 30th-June 5th.
Figure 3(b) shows the low correlations between these two
week pairs are evident, which display how different these
two weeks are.

3.2 Simulation Model

Identifying the pairs of days/weeks with same weather can
be challenging, considering the fact that two days are also
the same day of the week (e.g. Sunday Vs Sunday). This
motivates us to pursue a simulation based model which does
not consider similar weather days/weeks. With this model,
we estimate the normal energy usage on a single day and
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Figure 4: An example graph showing HVAC (a) temper-
ature (baseline, optimized, min and max) and (b) price
calculated by simulation and optimization model for
a single day at every 5 minute interval

during the same day when optimization is not enabled. Our
model uses parameters similar to optimization to imitate the
operations. After we compute the electrical energy usage for
HVAC and WH, we aim to calculate the cost of total energy
usage needed based on the current market price of each
kilowatt of energy during that particular time period. We
find the cost of energy usage by the simulation model after
every five minute interval during the day and compare this
cost with the cost of energy usage by the HCS optimization
shown in Figure 4.

Quantifying cost savings on HVAC on simulation model: We
compare the total wattage (in kilowatt-hours) spent by the
optimization and simulation for one week given the market
price. Figure 5 shows the plots of HCS optimization and sim-
ulation model for HVAC in terms of total cost, total energy
usage, and peak energy usage per day at neighborhood-level
for one week from May 17th to May 23rd when the optimiza-
tion is enabled.

In total, over the whole week, in comparison to the sim-
ulation model, our optimization is able to save $69.25 or
433 kilowatt hour at the neighborhood-level. On an average,
each of the home saves at least 163 watt-hours of energy and
14 cents in a day.

4 VISUALIZATION

The identified similar weather days/weeks pairs enable un-
derstanding the impacts of co-optimizing comfort of the
home users, energy costs and peak demand which can be
visualized through several interactive web-based dashboards.

Quantifying cost savings on HVAC using similar weather
pairs: After the computation of similar weather day/week
pairs, we select the top 30 pairs that are ranked based on
the similarity score. We then extract the power used by
the HVAC systems for those similar weather day pair dates.
Figure 6 is an interactive dashboard that displays the cost
savings due to optimization for each pair of the 30 similar
weather pair days at a home and neighborhood-level after ap-
plying two different rate structures namely family dwelling
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(FD) and TOU rate. This dashboard has 4 widgets that are
described below:

(1) HVAC Cost Savings at Neighborhood-level: This wid-
get displays the HVAC cost savings aggregated up to
the neighborhood level for each pair of the 30 similar
weather pair days.

(2) HVAC Cost Savings at Home-level: This widget shows
the HVAC cost savings at a home level but aggregates
the costs for all the 30 similar pairs (i.e., around one
month savings).

(3) HVAC Total Change: The total change widget sums
up the cost savings for the entire neighborhood for all
the 30 similar day pairs to get an estimate of the total
cost savings for one-month period.

(4) HVAC Overrides aggregated by week: The HVAC over-
rides widget displays the total number of overrides per
home for the weeks of May and June when optimiza-
tion was on. This widget interacts with the rest of
the widgets, so when we exclude homes that decided
to override most of the days during the optimization
(HCS) enabled weeks, we can instantaneously see the
cost saving changes due to the exclusion of those spe-
cific homes.

Negative costs within the HVAC total change widget indi-
cate cost savings displayed in red. The cost differences that
are positive are displayed in blue which indicate more costs
were incurred when optimization was applied. In Figure 6,
we see significant cost savings due to HVAC control. We
filtered out the homes with the highest number of overrides
of the weeks when optimization dispatch is on, which give us
more accurate assessment of the cost savings. Note that this
approach is not applicable for the WH optimization since
the usage of WH is not dependent on the weather.

The similar FD cost comparison for HVAC using similar
weather weeks is shown in Figure 7. It is challenging to find
similar weather that match every day in a week. Because the
weather attributes we use to find similar weather days do
not have a close match for all seven days in a week. Thus, the
computed HVAC cost savings using similar weather week
pairs may not be a fair comparison since HVAC usage is
dependent on the weather.

Three-Bucket Dashboard Visualization: Figure 8(a) shows
the three-bucket dashboard snapshot for a pair of similar
weather days (April 15th and April 21st) at a home-level. The
three buckets are described below: Comfort bucket: mainly
captures the number of HVAC and WH overrides and num-
ber of temperature violations that were encounters within
homes. The number of overrides indicates how many times
the household members change the settings of HVAC and
WH per day and week. For per day, we consider a house
has an override on that day and keep the settings for the
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Figure 6: Interactive dashboard to visualize HVAC cost savings at both home and neighborhood-level for the

similar weather day pairs.

rest of the day. For per week, we consider how many days
of the particular week a house has changed its settings. If
we find a house has changed its settings at any time-period
of a day in the week, we consider its settings have changed
for that day and classify that house as true override for that
day of the week. The comfort of the user can be measured
by understanding how often the 1) home owner overrides
his/her desired comfort range of temperatures within his
home during any time of the day referred to as HVAC over-
rides and 2) home owner overrides the WH or basically not
choose/accept the recommended schedule of operating the

WH appliance referred to as WH overrides. The temperature
violations occur when the zonal thermostat temperature is
outside the comfort temperature range for each home given
the schedule that stores the cooling and heating set points
provided by the home owner. To compute the temperature vi-
olations, we first extract time series temperature data (every
five minutes) for each zone within the home, activity (home,
away) and mode (auto, heat, cool) data using the schedule
information provided under configuration file. The configu-
ration files contain activity schedule, and cool and heat set
points. However, each mode has their own methodology of
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Figure 7: HVAC Cost Difference for Similar Weather
weeks

calculate set points. Note that T,, Tcsp, Tysp represent the
zonal temperature, cooling set point, and heating set point,
respectively. The temperature violation is counted when the
thermostat temperature falls outside of set points that are
specified based on the mode. Each temperature violation can
be classified as too warm and too cool.

e Auto mode uses Tcsp and Tysp as listed in the config-
uration file.
— Violation Too Warm: T, > Tesp
— Violation Too Cool: T, < Tysp
e Cooling mode uses Tcsp and Tesp — 2
— Violation Too Warm: T, < Tcsp
— Violation Too Cool: T, < Tesp — 2
o Heating mode uses Tysp and Tysp + 2
— Violation Too Warm: T, > Tygsp + 2
— Violation Too Cool: T, < Tysp

From Figure 9, we notice that the neighborhood has many
“too cool” violations in cooling mode during the month of
May since the homes will naturally get cooler than the (cool-
ing set point —2) and we see very few cooling mode “too
warm”.

Energy bucket: This captures the differences between base-
line and optimized costs (using the FD & TOU rate signals),
and the difference between baseline and optimized energy
usage and forecasted power usage accuracy. FD rate plan is
typically for the standard residential customers which has a
monthly base charge and a rate that changes based on the
monthly electricity usage and the time of the year. The nega-
tive difference shown in the table for energy usage or energy
cost means that there are energy or energy cost saving. The
plots of actual and forecast power usage for HVAC and WH
given the pair dates with the price signal are displayed in
this bucket.
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(a) three-bucket dashboard

baseline vs optmization cost

HVAC
Total change -5.563602418245866
Total baseline cost = 7.427826584912539
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(b) cost saving table of HVAC

(d) energy cost on HVAC in a day (e) change of cost on HVAC

Figure 8: (a) displays an interactive dashboard for
three-bucket visualization using similar weather or
statistical model. (b)-(e) displays an interactive dash-
board for three-bucket visualization using simulation
model.

Demand bucket: This focuses on the collected channel data
for the peak demand of HVAC, WH, and main power of given
dates. The difference of peak demand for each component is
calculated and converted into percentage. Figure 10 shows
the HVAC peak power analysis given two pairs of similar
days (May 17th and May 26th, and May 28th and May 25th).
The dates that optimization enabled have lower HVAC power
demand peak compared to the dates with no optimization
applied when the peak price signal is shown.
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Temperature Excursions for Zone 1: Home Level

Hactiam

Figure 9: Comparison of temperature excursions be-
tween two days of May when the optimization is en-
abled and disabled respectively at home-level. Red in-
dicates “"too warm” and blue indicates "too cool”

HVACPeak Power Analyss: May 17 (Opt ON) and May 26 (0pt OFF)

el

HVACPeak Power Analyss: May 18(0pt ON) and May 25 (0pt OFF)

Figure 10: HVAC Peak Power Analysis in May

Dashboard for simulation model: In Figures 8(b)- 8(e), we
visualize the price graph and power graph in a three-bucket
modeling dashboard to compare the performance of HCS
with the simulation model.

5 DISCUSSION

While the similar weather day/week pairs identification
method has provided optimistic results, there are some chal-
lenges that will need to be addressed in the future. As an
example, one of the drawback with the similar weather week
identification method is that the weather similarity curves
between two weeks may not be as close as the curves be-
tween two similar days. Our results indicate that two closest
days that matched up are far more similar to one another
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than the 2 weeks that matched mainly due to the fact that
the probability for weather patterns to be the same for a
day is much greater than being the same for a week period.
Additionally, identifying two similar weather days is less
challenging than identifying two similar weeks since the
pool of dates to compare is seven times greater than the pool
of weeks.

Also, the paired dates are computed using weather data
(temperature, humidity etc.) that is recorded every 5 minutes
which is the finest resolution data that we currently store
within the database. If we are identifying similar pair days,
we have many pairs for which we can compute weather
similarity (by picking one day from the dispatch week and
one day from the non-dispatch week). If we are identifying
similar pair weeks, then we have lesser pairs to compute
but the time-series weather data used for the week is seven
times more than a day. So, the amount of data we are using
for the computation remains the same, although computing
similar pair days can be easily parallelized than similar weeks
computation algorithm.

We also noticed that the participant’s energy usage pattern
on different days of the week could bias the results. For
example, if two days had very similar weather patterns with
HCS enabled and disabled, but occurred on different days
of the week, the actions of the participants would skew the
cost associated with optimizing climate conditions within
the home. A participant’s energy usage on weekends and
weekdays could be significantly different, even though the
two days had similar weather patterns.

However, using a week long of energy usage data may
better capture the usage pattern than a day data. Due to
these constraints posed by similar weather days/weeks de-
tection methods, a combination of approaches (including
simulation based) is recommended for quantifying cost sav-
ings due to optimization. Overall, using both methods of
analysis allowed us to have a better picture of the results of
optimization.

6 CONCLUSION

Rapid grid modernization along with growth of IoT, Big
Data and artificial intelligence technologies are enabling
electric utilities to perform automatic scheduling and control
of smart appliances such as HVAC and WH systems which
accounts for a majority of residential load within smart neigh-
borhoods to minimize energy costs. Quantifying economic
savings requires accurate baseline data (without optimiza-
tion applied) to effectively compare with the energy costs
due to optimization and control. In this paper, we proposed
a novel method of identifying similar weather day/week
pairs to perform a fair comparison of energy costs with and
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without optimization applied at home and neighborhood-
level within high-performance residential homes. With the
identified two similar weather days in May and June, the
energy cost savings with optimization applied to HVAC at
neighborhood-level is approximately $700 within a month
period. We filtered homes that overrides HVAC settings most
of the days and found that the cost savings is still significant.
We also demonstrated a simulation based method to quantify
cost savings and showcased our results through interactive
visualization dashboards.

For future work, since the simulation model based ap-
proach of quantifying cost savings does not depend on weather,
we plan to use this model to quantify cost savings due to
WH (since WH usage is not dependent on weather) as well
as a part of future work. Future studies will also focus on
a promising deep learning based approach for quantifica-
tion of cost savings through optimized control of HVAC and
WH appliances based on electricity price signal. A long-term
short-term (LSTM) network based analysis will be used to
predict the consumption pattern of the household power
using historic data during normal operation without opti-
mization. Due to high-frequency datasets available, these
predictions will be fairly accurate and will be compared
against the actual power consumption of the neighborhood
to provide reasonable estimates of utility-cost reductions
obtained due to optimized control of smart appliances.
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